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BANACH SPACES THAT HAVE NORMAL STRUCTURE AND

ARE ISOMORPHIC TO A HILBERT SPACE

JAVIER BERNAL AND FRANCIS SULLIVAN

Abstract. We prove that given a Hubert space ( E, \\ ■ ||), and | ■ | a norm on E such

that for all .y e E, l/ß\x\ ^ \\x\\ «: |jc| for some ß, if 1 <s ß < \¡2 . then (£, | • |)

satisfies a convexity property from which normal structure follows.

1. Introduction. A Banach space E is said to have normal structure if for each

bounded, closed and convex subset C of E, consisting of more than one point, there

is an x e C such that

sup{|J>- y\\:ye C) < diam(C) = sup{\\y1 - y2\\: yv y2 e C}.

In [4] it was proved that if E has normal structure, C ç E is a nonempty weakly

compact convex set, and T: C -* C is a mapping such that for all x, y e C,

||Zjc — Ty\\ < \\x - y\\, then T has a fixed point in C.

For r > 1 let Er be the space l2 renormed by

|xf,« max{ ||jc||2, rgjelloo},

where || • ||2 and || • H^ denote the l2 and lx norms, respectively. It is known from [1]

that Er has normal structure when r < y/2 .

We use the idea of multidimensional volumes and their related convexity moduli

to prove Er satisfies a convexity property that implies this result. The notion of

volumes in Banach spaces was introduced by Silverman and its use in defining

moduli of convexity was introduced in [5]. Roughly speaking, the modulus of

A:-rotundity, Sk(e), measures the depth below the surface of the unit sphere of the

centroid of a simplex of k + 1 norm-1 vectors enclosing a Ac-dimensional volume

larger than e. In symbols,

A(xlt...,xk+1)>e

implies that

\\(xL+ ■■■ + xk+l)/(k + l)l<l ~Sk(e).

Here A(xl,...,xk + l) denotes the enclosed volume. In case k = 1, A(xl,x2) =

\\xl - x2|| and S¡(e) is the usual modulus of convexity. In all cases

D(\\-\\,x1,...,xk + 1)^A(x1,...,xk + 1).
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Here

D(\\ ■ \\,xl,...,xk+l) = \\xk - xk + l\\ ■ dist(xA._!,[^, xk+1])

.dist(xl,[x2,...,xk+1])

where [xi+l,.. .,xk + l] is the affine span of the vectors xi+1,...,xk+1 and

dist(x¡,[xi+1,...,xk+l\) = mî{\\x, - x\\: x g [x,+l,...,xk+1]}.

For a Hubert space the inequality is always equality.

A connection between these moduli and normal structure of a Banach space E

was given in [3], namely

Lemma. Suppose that for some 8 > 0 and some 0 < e < 1 there is an integer m such

that for all norm-l xl,...,xm g E, if \\(xl + x2 + ■ ■ ■ + x„,)/m\\ > 1 - 8 then

D(\\-\\,Xl,...,xm)<e.

Then E is super-reflexive and has normal structure.

2. The result.

Theorem. Let (E,\\ • \\) be a Hilbert space, and let \ ■ \ be a norm on E such that for

all x G E, l/ß\x\ < \\x\\ < \x\ for some ß, 1 < ß < fií. Given e > 0, there exists

8 > 0 and M, a positive integer, such that for m > M, if xx,..., xm e E, \xx\,..., \x„,\

«S 1, and\(xi + ■ ■ ■ + xm)/m\2 > 1 - 8, then D(\ ■ \, x1.xm) < e.

The proof requires some preliminary results.

Lemma 1. Given k, a positive integer and ß > 0, let f, g be the functions from Rk into

R defined by

1        k

f(xl,. . -,Xk) = ~T~^T\   ¿-i   i + \ \Xk+l-i)  '
i = l

k

g(x„...,xk) = ß- Y\Xi,       (xx,...,xk)^Rk.
i=\

Thenf(x) > (k/(k + \))(ß2/k/(k + l)1^) whenever x e Rk andg(x) = 0.

Proof. Let w e ß = ( x e Rk; g(x) = 0} and y = f(w) > 0. Then Û =

/~L([0, v]) n ñ is nonempty and compact and, thus, there exists x* g Û, a global

minimum point of/over Û. Also, if z g Q \/_1([0, y]) then/(z) > y so that x* is a

global minimum point of / over ß.

With x* = (*>!,...,bk) then Ylf=lbi = ß > 0. Thus Vg(x*) # 0, where vg is the

gradient of g. It now follows, by Lagrange's theorem, that for some X g R,

Vf(x*) = Kvg(x*).

So, for each i, 1 «g i < k,

k + lk + 2rJbi~XJJibj
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or

2    k + l-i 2    x/î_n
k~+~\k + 2-ibi -^-°-

Thus, for each i, 1 < i < k, ((k + \)/2)\ß = ((k + 1 - i)/(* + 2 - /))¿>,2, and

* + 1

A: + 2 - i }=\k+2-jDJ      k + \p-

Therefore, ((A: + 1 - i)/(k + 2 - i))bf = ß2/k/(k + \f/k for each i, 1 < i < k.

So, given x g S2,

k

; = 1
'* + !-

1      À A:+ 1 -/     =     k ß2/k

= k+lfrk + 2-i •      k + l{k + 1)Vk-

Lemma 2. Let (E,\\ ■ \\) be a Hubert space and k any positive integer.  Given

x1,...,xk + l g £,||x1||,...,||a:íh.1|| < I, then

xx + lk + l

k + 1
< 1 -

1 - £ ——
i ~ i + i

7 = 1

yk + 1

lk+l-

Proof. Since (E, || • ||) is a Hubert space, given x,y e E, then

1 k

k +1

i

A: + 1
Ull2 +

k + 1 (* + l)2
\x-y\\2

In particular, given xv...,xk + l g E,

i2
Xj + + *t

A- + 1

1

A- + 1""11

A:

A: + 1

x2 + + Xt

k* + l

(*+l)2

The proof of the lemma now follows by induction on A:.

Lemma 3. Let (E,\\ ■ ||) be a Hilbert space and k a positive integer. If xx,. ..,xk + l g

E, \\Xl\\,...,\\xk + l\\ < 1, £>(|| • ||, xv...,xk+1) > e > 0, then

\\(Xl +  ■■■+ xk + l)/(k + 1)||2 < 1 -(k/(k + \)){e^k/(k + 1)1A).

Proof. Since D(\\ • ||, x, ••• xk + l) > e then £>(|| • ||, xlt... ,xk+l) = ß, where ß >

e. Let d, = dist(jc,-,[x/+1,.. -,xk+l]), for each /', 1 < i < k. By Lemma 2, with / as

defined in Lemma 1, it follows that

xi + ■■■ + xk+k + l

k + 1
<1

1—— ¿zk + l **,t=i
k

i + 1

y k + l

'■k + l-i

i - j^j L -irjd2k+l_, = \ - f(dl,...,dk).
/=i
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However,nf=1í/, = D(\\ ■ ||, xx,. ..,xk + 1) = ß. So, by Lemma 1,

f(dx,...,dk)>(k/(k + l))(ßVk/(k+l)l/k),

and, therefore,

IK*, + • • • + **+i)/(* + i)ll2 < i -(*/(* + i))(«vV(* + i)1/Ä)-

Remark. Extending these ideas [2] gives the exact value of the modulus of

Ar-rotundity of a Hubert space, e.g.

**(«)-!
c2/k

k + 1 (k + l)
i/k

1/2

Proof of the Theorem. Choose tj > 0 so that ß2 + tj < 2. Given any e > 0, A: a

positive integer, let Ak(e) = (k/(k + l))(e2/k/(k + l)l/k). Since lim^^A^e) = 1,

select M > 1 so large that Am^1(e) > 1 - rj whenever m > M.

Now, let 8 = 2 - ß2 - tj, and suppose m ^ M, \(x1 + ■ ■ ■ + xm)/m\2 > 1 — 8,

\xx\,...,\xm\ < 1, while D(\ • \,xlt...,xm)> e. Then \\Xl\\,.. .,\\xm\\ < 1 and

ö(|| • \\,Xl,...,xm) > (l/yf3)ml • D(\ ■ \,Xl,...,xm) > (l/ß)m-\.

It follows from Lemma 3 that

*i +  ■•■ + x„
<1

However,

1 - 8 <
Xi+ ■■■ + x„

m
<ß-

^ß2\     -*m-i\\j = i82|l-|^)Am_1(6)

= ß2 - àm_x(e) < ß2 + i, - 1.

This contradicts the definition of 8. Therefore, D(\ • |, xx,... ,xm) < e.   Q.E.D.

The result proven in [1] now follows from this theorem and the lemma mentioned

in the introduction.

Corollary. Let (E,\\ ■ \\) be a Hilbert space and let \ ■ | be a norm on E such that

for all x G E, l/ß\x\ < \\x\\ < \x\for some ß, 1 < ß < \/2 . Then (E, \ ■ \) has normal

structure.

Note that the Theorem is sharp because Bâillon and Schöneberg proved that Er

fails to have normal structure for r > y2 .
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